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ABSTRACT

This paper presents a word-level decoding architecture of Embed-
ded Block Coding (EBC) in JPEG 2000. This architecture decodes
one coefficient per cycle based on the proposed word-level decod-
ing algorithm. This algorithm eliminates state variable memories by
decoding all bit-planes in parallel. The proposed column-switching
scan order overcomes intra bit-plane dependency and inter bit-plane
dependency to enable parallel processing. Implementation results
show the proposed architecture can decode 54 MSamples/s at 54
MHz, which can support HDTV 720p (1280×720, 4:2:2) decoding
at 30 frames/sec in real time.

1. INTRODUCTION

JPEG 2000 [1] uses two key components, Discrete Wavelet Trans-
form (DWT) and Embedded Block Coding with Optimized Trunca-
tion (EBCOT), to achieve excellent coding efficiency and numerous
features, such as Region of Interest (ROI) and various scalabilities.
The scalabilities come from the multiple decomposition of the DWT
and the Embedded Block Coding (EBC) of the EBCOT.

The complexity of JPEG 2000 coding system is much higher
than that of JPEG. The EBC occupies 53% of total computation [2],
which is the most critical part in JPEG 2000 coding system. There-
fore, hardware implementation of the EBC is a must for real-time ap-
plications. Many EBC architectures [2][3][4] were proposed. All of
them are bit-plane sequential architecture, which encode or decode
a code-block bit-plane by bit-plane. Besides, all of them require on-
chip SRAM to store state variables. The sequential processing makes
high performance JPEG 2000 coding system for coding HD motion
pictures impossible. To solve this problem, a word-level EBC archi-
tecture [5] for encoding is proposed to encode one DWT coefficient
per cycle. It dramatically increases the throughput for JPEG 2000
encoder and eliminates state variable memories. This architecture
encodes all bit-planes in parallel by looking one column coefficients
ahead to generate state variables. However, this architecture can-
not be used for decoding because of unknown values of un-decoded
coefficients.

The most critical problem to design a parallel decoding architec-
ture is the data dependency. The current sample cannot be decoded
without decoding the previous sample. Neither looking ahead tech-
niques [5] nor pass-parallel technique[4] can be used to increase the
throughput of the EBC because of unknown values of un-decoded
coefficients. In this paper, a word-level EBC architecture in JPEG 2000
decoder is proposed to achieve high throughput. The word-level ar-
chitecture decodes all bit-planes in parallel based on the proposed
word-level decoding algorithm. The proposed column-switching scan
order overcomes data dependency problem. Moreover, the state vari-
able memories are eliminated due to parallel processing. The through-
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Fig. 1. Diagram of the embedded block coding.

put of the EBC is dramatically increased to decode one coefficient
per cycle.

2. EMBEDDED BLOCK CODING ALGORITHM IN
JPEG 2000 DECODER

Embedded Block Coding in JPEG 2000 decoder is composed of the
Context Formation (CF) and the Arithmetic Decoder (AD), as shown
in Fig. 1. The AD decodes one binary-valued sample bit, D, by
receiving a context generated from the CF and the embedded bit
stream. The basic decoding unit of the EBC is a code-block with
typical size of 64 × 64 or 32 × 32. The order of bit-plane decoding
is from the Most Significant Bit (MSB) bit-plane of the code-block
to the Least Significant Bit (LSB) bit-plane, as shown in Fig. 2. A
W ×W bit-plane is further divided into stripes, with size of 4×W .
The scan order is first column by column within a stripe and then
row by row for stripes. Each bit-plane requires three coding passes:
the significant propagation pass (Pass 1), the magnitude refinement
pass (Pass 2), and the cleanup pass (Pass 3). The MSB bit-plane,
which is an exception, requires only the Pass 3.

A context window, as shown in Fig. 2, is involved while mod-
eling the context of a sample bit in a bit-plane. The sample bit to
be coded lies in the center of the context window and is denoted as
C. The eight-connected neighbors of C are further divided into hor-
izontal (H), vertical (V), and diagonal (D) groups according to their
relative position to C. For the CF, a binary state variable called sig-
nificant state is defined for a coefficient to indicate whether or not a
non-zero magnitude bit has been decoded in previous bit-planes or
passes. Then, the coding pass of C is determined by the significant
states of C itself and its neighbors. If C has been significant, it be-
longs to the Pass 2. If C has not been significant but at least one of
its neighbors has been significant, it belongs to the Pass 1; otherwise,
it belongs to the Pass 3.

Nineteen contexts are used to adapt the probability models of
the AD. The contexts are mapped by the significant states of the
neighbors of C. Note that the newest values of the state variables
must be used and the causality must be satisfied in the scan order
described above. Detailed information on the context mapping can
be found in [6].
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Fig. 2. Diagram of code-block and stripes. The numbers represent
the scan order.

3. PARALLEL EBC DECODING ALGORITHM

In this section, we propose a word-level EBC algorithm for decod-
ing. By use of this algorithm, the EBC decodes one coefficient per
cycle regardless of numbers of bit-planes. All state variables are gen-
erated on-the-fly by using parallel algorithm. Moreover, the through-
put is significantly increased due to parallel processing. For the pro-
posed algorithm, causal context and pass termination, which are de-
fined as parallel mode in the JPEG 20000 standard, are used. The
causal context is that the samples in the next stripe are considered
as insignificant sample. The pass termination is that the embedded
bit streams are terminated at the end of each coding pass and the
adaptive probability of arithmetic coder is initialized.

3.1. Column-switching Scan Order

There are two data dependency problem for the EBC decoding algo-
rithm defined in JPEG 2000 standard. One is intra bit-plane depen-
dency and the other is inter bit-plane dependency. As shown in Fig 2,
the coding pass and the context of C depend on the decoded values
of the eight surrounding neighbors in the same bit-plane, which is
called intra bit-plane dependency, and depend on the decoded val-
ues of eight surrounding neighbors in the upper bit-planes, which is
called inter bit-plane dependency.

In this section, we proposed a column-switching scan order to
solve above two dependency problems. The scan order in a bit-plane,
k, is illustrated with Fig. 3. The numbers in the circle presents a ex-
ample of decoding order. There are two sub-scans, Pass 1 decoding
scan in a column and non-Pass 1 (Pass 2 and Pass 3) decoding scan in
a column. The sample bits are decoded one column by one column
in a column-switching manner. In each sub-scan, only the samples
to be decoded are visited and each visited sample requires one pro-
cessing cycle. Therefore, the numbers of processing cycles needed to
decode a bit-plane are equal to the numbers of sample bits in this bit-
plane. Note that, the Pass 1 decoding scan precedes the non-Pass 1
decoding scan by one column to avoid intra bit-plane dependency.
The reason for one column precedence is that the non-zero value of
decoded sample bits in the next column of C has significant contri-
bution to C.

For the inter bit-plane dependency problem, it can be solved by
4 column latency between two successive bit-planes, i.e., the (k−1)-
th bit-plane starts to scan when the k-th bit-plane starts to scan 4th
column. Figure 4 illustracts a critical example of the nearest dis-
tance between two context windows in two successive bit-planes.
The number in a circle indicates the order of the decoding cycle ex-
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Fig. 3. Proposed column-switch scan order in a bit-plane.

cept −1 indicates the initial condition. The (k-1)-th bit-plane starts
to scan at the moment that the k-th bit-plane starts to scan 4th col-
umn at 14th decoding cycle. The -1 column in the (k-1)-th bit-plane
is initialized with two Pass 1 samples since there are two Pass 1 sam-
ples at the 3rd column in the k-th bit-plane. The nearest distance of
two context windows is happened at 36th and 37th decoding cycle.
The 7th column is overlapped between two context windows, and
all decoded samples of this column in the k-th bit-plane are avail-
able. Therefore, inter bit-plane dependency problem is avoided. The
movement speed of context window in the k-th bit-plane is slowed
since there are four Pass 1 samples at 9th column while the move-
ment speed of the context window in the (k-1)-th bit-plane is accel-
erated since there is no Pass 1 sample at 5th column. The moving
direction of two context windows are reversed after the finish of the
scan of 8th column and 7th column in k-th and (k-1)-th bit-planes
respectively. The initial three column spacing between column 0 and
column 4 consist of two columns and one column for moving jitter
and one column overlap, respectively, of two context windows.

All bit-planes in a code-block are scanned with the column-
switching manner described above and each bit-plane decodes one
sample bit per cycle. All bit-planes are decoded in parallel results
in one coefficient decoding per cycle. The latency to decode a co-
efficient is 4 × N columns, where N is numbers of bit-planes in a
code-block.

3.2. Coding Pass Classification

In this section, the coding pass classification algorithm is presented.
Let dk

c denote the value of the central sample bit (C) in the k-th
bit-plane, and dk

s , s = {h0, h1, v0, v1, d0, d1, d2, d3} as shown in
Fig. 2, denote the value of decoded bit of either one of the eight
surrounding samples in the k-th bit-plane. The values of k are from
N − 1 to 0, and zero represents the LSB.

The coding pass, pk
c , is determined by the significant contribu-

tions of its neighbors at bit-plane k. The contribution of s to the k-th
bit-plane of C is represented by φk

s . Note that when C is located on
the last row in a column, φk

d2, φk
d3, and φk

v1 are set to zero since the
causal mode is used. The contribution of s is determined by

φk
s =

��
�

1, d̂k
s = 1

1, (d̂k
s = 0)&(dk

s = 1)&(νk
s = 1)

0, otherwise

, (1)

where νk
s indicates whether s is decoded before C or is decoded after

C (visited or not visited), and d̂k
s is

d̂k
s =

�
0, k = N − 1

dk+1
s |d̂k+1

s , 0 ≤ k < N − 1
. (2)
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The coding pass, pk
c , is

pk
c =

��
�

2, d̂k
c = 1

1, (d̂k
c = 0)&(

�
φk

s = 1)
3, otherwise

, (3)

where the range of
�

φk
s is from 0 to 8.

3.3. Context Formation

In this section, we propose a parallel CF algorithm, which calculates
state variables on-the-fly. Therefore, no state variable memories are
required. The essential state variable of a coefficient, significant
state, is equal to φk

s , which can be obtained by (1) and (2). The
first refinement state variable, rk

c , for the C belonging to Pass 2 is
generated by

γk
c =

�
1, (d̂k+1

c = 0)&(dk+1
c = 1)

0, otherwise
. (4)

The context of C is mapped according to the context table defined in
JPEG 2000 standard[1] with the generated state variables.

3.4. Arithmetic Decoder

In the parallel mode, the probability tables are reset on each cod-
ing pass, and the embedded bit stream of each pass is terminated to
separate it from other coding passes. Termination on each pass pre-
vents error from propagating across passes and makes parallel EBC
decoding possible.

4. WORD-LEVEL EBC ARCHITECTURE

In this section, a word-level EBC architecture for decoding is pro-
posed based on the word-level algorithm. The proposed architecture
is shown in Fig 5. It decodes 10 magnitude bit-planes as well as
sign bit-plane in parallel. There are three major functional blocks,
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Context Formation (CF), Magnitude Register Bank (Mag. REB),
and Four-symbol Arithmetic Decoder (FAD). The FAD receives con-
texts generated from the CF and decodes magnitude bit and sign bit
as well as runlength indicator. The FAD is capable of processing
maximum 4 symbols for a sample scanned by the CF in a cycle.
Therefore, decoding one sample bit per cycle is achieved. The out-
puts of CF are decoded magnitude bit and sign bit. The sign bit is
merged into the dataflow of the CF of the next lower bit-plane while
the magnitude bit is merged into Mag. REB. The 12×64-bits line
buffer is used to buffer the decoded coefficients of the last row in the
previous stripe. The partial decoded coefficient is feedbacked from
CF 3 to serve as the coefficients of the last row in the previous stripe
for a code-block size 32×32 since the latency (4 × 10 columns)to
decode a coefficient is larger than 32 columns.

The CF architecture is shown in Fig. 6, in which the architec-
ture of each processing element is shown in Fig. 7. Each CF has four
column PEs, C0, C1, C2, and C3, because of four column latency be-
tween two successive bit-planes to solve inter dependency problem,
and each PE generates the corresponding state variables defined in
Sec. 3. Note that a special code, (d̂k, dk, νk) = (1, 1, 0), is used
to represent γk to save one bit register. The Finite State Machine
(FSM) controller receives all state variables calculated from each PE
and generates corresponding contexts to the FAD. The forward con-
trol signal is issued whenever four samples in a scanned column are
decoded. When the switch signal is issued, all the data stored in
the register of each PE are shifted by one column left, and the CF
fetches a column from the previous CF of the upper bit-plane. The
column PE, C4, is used as temporal buffer until the forward signal
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in the CF of the next lower bit-plane is issued. The temporal buffer
is to overcome the moving jitter problem of two context windows in
successive two bit-planes. The column-switching scan order, which
is described in Sec. 3.1, is realized by FSM controller, and the state
transition diagram is shown in Fig. 8. The realized column-switching
scan order can be seen from the another view point; the context win-
dow moves forward and backward at C1, C2, and C3 in each CF,
while an empty code-block is shifted into the EBC from right to left
to decode coefficients out with 4 × N columns latency.

5. IMPLEMENTATION RESULTS AND COMPARISONS

The word-level architecture is described by the Verilog HDL (Hard-
ware Description Language) and has been logic synthesized. The
gate counts and memory requirements are shown in Table 1. It can
decode 54 Msamples/sec at 54 MHz and can support HDTV 720p
(1280×720, 4:2:2) resolution pictures decoding losslessly at 30 fps
(Frames Per Second) in real time.

The comparisons of the parallel architecture with other works
are summarized in Table 2. Here, speed means the average number
of cycles required to encode a code-block of size W × W , and the
number of magnitude bit-planes of the code-block is N . Causal con-
text and pass termination are used in [4][5] and this work, while the
default mode is used in [2][3]. The encode/decode indicates whether
this architecture supports for encoder and decoder. By this table, the
word-level decoding architecture is about 1.3N times faster than [3]
and N times faster than [4]. A Performance Index (PI) defined as the
throughput in one cycle and one unit area, i.e. W×W

speed×Gates
, is used

to make a fair comparison at typical values N = 6 and W = 64.
All the works have similar PI but on-chip memory requirement of
our work is smaller than [2][3][4]. Moreover, our work overcomes
dependency problems to achieve high throughput due to parallel pro-

Table 1. Hardware Requirement of the Proposed Architecture.

CF Mag. REB FAD Control
Datapath

2431 × 10 11885 9732 × 10 4898
(gates)

Memory
12 × 64 - - -

(bits)

Table 2. Comparison of the Parallel Architecture and Other Works.

Speed Gates Memory Encode/ PI
(Cycles) (NAND2) (Bits) Decode

[2] 1.3NW 2 19000 5W 2 Yes/Yes 0.027
[3] 1.3NW 2 21589 4W 2 Yes/Yes 0.024
[4] NW 2 23927 4W 2 Yes/Yes 0.029
[5] 1.5W 2 91758 12W Yes/No 0.029

ours W 2 138414 12W No/Yes 0.028

cessing while [2][3][4] cannot increase throughput by cascading bit-
plane sequential architecture directly. Besides, the proposed EBC ar-
chitecture is easily integrated into decoder system since the EBC and
the DWT are word-level operation algorithm while [2][3][4] needs
code-block memory between the EBC and the DWT due to serial to
parallel conversion.

6. CONCLUSION

This paper presents a word-level decoding architecture of Embed-
ded Block Coding (EBC) in JPEG 2000 decoder. This architecture
is based on the proposed word-level decoding algorithm. This al-
gorithm overcomes intra bit-plane dependency and inter bit-plane
dependency by the proposed column-switching scan order. It also
eliminates state variable memories used in the conventional decod-
ing architecture. Implementation results show that the word-level
architecture can support HDTV 720p (1280×720, 4:2:2) decoding
losslessly at 30 fps in real time.
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